Spek, A. L. (1994). Am. Crystallogr. Assoc. Meet. Abstr. Paper M05. Spek, A. L. (1995a). PLATON. Molecular Geometry Program. University of Utrecht, The Netherlands.
Spek, A. L. (1995b). PLUTON. Molecular Graphics Program. University of Utrecht, The Netherlands.

Acta Cryst. (1996). C52, 2713-2716

(4-Nitrophenyl 1,3,5,8,12-pentaaza-cyclotetradec-3-yl ketone- $\left.N^{1}, N^{5}, N^{8}, N^{12}\right)$ copper(II) Dinitrate

Nicola Sardone ${ }^{a}$ and Maurizio Licchelli ${ }^{b}$
${ }^{a}$ Centro Grandi Strumenti, Università degli Studi di Pavia, I-27100 Pavia, Italy, and ${ }^{b}$ Dipartimento di Chimica Generale, Università degli Studi di Pavia, I-27100 Pavia, Italy. E-mail: nicola@elicona.unipv.it

(Received 5 June 1996; accepted 5 July 1996)

Abstract

In the crystal structure of $\left[\mathrm{Cu}\left(\mathrm{C}_{16} \mathrm{H}_{26} \mathrm{~N}_{6} \mathrm{O}_{3}\right)\right]\left(\mathrm{NO}_{3}\right)_{2}$, the metal ion lies in an elongated octahedral coordination. Only the four secondary amine N atoms of the macrocycle are bound to the Cu^{2+} centre which resides 0.080 (1) \AA out of the N_{4} donor plane. The coordination sphere is completed by two nitrate O atoms axially coordinated with different $\mathrm{Cu}-\mathrm{O}$ distances.

Comment

Pentaaza macrocyclic systems, known as azacyclams, are obtained through one-pot template syntheses in which Cu^{2+} or Ni^{2+} ions behave as templating agents. These reactions involve the closure of an open-chain tetraamine, preoriented through coordination to the metal centre, by a primary amine, amide or sulfonamide group in the presence of excess formaldehyde and base, and offer the opportunity to append a variety of substituent groups onto the aza macrocyclic system (Fabbrizzi et al., 1991; De Blas et al., 1993; Abba et al., 1994). The crystal structure determination of this class of compounds allows the influence of the substituent group on the spectral and electrochemical properties of the complexes to be defined (e.g. by comparing the distortions in the square-planar or octahedral geometries). Structures of azacyclam complexes of both Cu^{2+} and Ni^{2+} ions have been determined in recent years (Fabbrizzi et al., 1991; De Blas et al., 1993; Abba et al., 1994), but no crystallographic characterization of $\mathrm{a} \mathrm{Cu}^{2+}$-azacyclam complex containing an amido group has been reported previously.

The crystal structure of the title complex, (I), shows copper(II) in an elongated octahedral coordination environment whose deviation from a regular geometry is only partially ascribable to the Jahn-Teller effect (Fig. 1). Only the four secondary amine N atoms of the macrocycle are bound to the metal centre giving a distorted square-planar geometry in which (i) two transN atoms (N 2 and N 4) lie up $[\delta(\mathrm{N} 2)=0.036(2)$ and $\delta(\mathrm{N} 4)=0.037(2) \AA]$ and the other two (N3 and N5) lie down $[\delta(\mathrm{N} 3)=-0.037(2)$ and $\delta(\mathrm{N} 5)=-0.037(2) \AA$ with respect to the N_{4} mean plane (tetrahedral distortion), and (ii) the Cu^{2+} ion resides 0.080 (1) \AA out of the N_{4} donor plane. The first coordination sphere of the metal ion is completed by two nitrate O atoms (O 1 and O 6) coordinated axially, with $\mathrm{Cu}-\mathrm{O}$ distances that are quite different $[\mathrm{Cu}-\mathrm{O} 12.437(2)$ and $\mathrm{Cu}-$ O6 2.673 (2) Å]. This is probably related to the Cu^{2+} displacement from the secondary amine plane towards the nitrate Ol atom. Although the $\mathrm{O} 1-\mathrm{Cu}-\mathrm{O} 6$ angle [$168.6(1)^{\circ}$] does not deviate excessively from linearity, the $\mathrm{O}-\mathrm{Cu}-\mathrm{N}$ angle values, varying in the range $81.9(1)-98.7(1)^{\circ}$, are indicative of a significant distortion from a regular octahedron.

(I)

It is interesting to compare the copper geometry observed here with that found in the structure of (3-methanesulfonyl-1,3,5,8,12-pentaazacyclotetradecane)dinitratocopper(II) (De Blas et al., 1994). Although the $\mathrm{Cu}-\mathrm{N}$ bond distances and angles and the average $\mathrm{Cu}-$ O distance are very similar, De Blas and co-workers

Fig. 1. A perspective view of the title complex shown with 30% probability ellipsoids.
observed no displacement of the metal centre from the N_{4} plane, symmetric $\mathrm{Cu}-\mathrm{O}$ distances and less distortion in the coordination geometry. The orientation of the two coordinating nitrate ions is quite different; the $\mathrm{N} 6, \mathrm{O}, \mathrm{O} 2, \mathrm{O} 3$ and $\mathrm{N} 7, \mathrm{O} 4, \mathrm{O} 5, \mathrm{O} 6$ planes form a dihedral angle of $18.5(3)^{\circ}$ and are inclined by 81.9 (1) and $65.8(1)^{\circ}$, respectively, with respect to the N_{4} plane. They each interact with the acidic H atoms of the macrocycle by means of two hydrogen bonds [H3N $\cdots \mathrm{O} 51.96(3), \mathrm{N} 3 \cdots \mathrm{O} 2.873(4) \AA$ and N3-H3N‥O5 $163(3)^{\circ} ;$ H5N $\cdots \mathrm{O} 32.35$ (3), $\mathrm{N} 5 \cdots \mathrm{O} 3$ 3.056 (3) A and N5-H5N $\cdots{ }^{\circ} 151$ (3) ${ }^{\circ}$].

The overall geometry of the azacyclam ring is similar to the geometries observed in analogous complexes (De Blas et al., 1994, and references therein). The sixand five-membered chelate rings adopt a flattened chair and a twist conformation, respectively; the centrosymmetric space group allows the coexistence of both $R S R S$ and SRSR cation configurations with two N-H bonds up and two down with respect to the CuN_{4} coordination plane. The bis(ethylenediamine)copper(II) moiety adopts a $\lambda-\delta$ configuration permitted by a pseudosymmetry plane bisecting the $\mathrm{N} 2-\mathrm{Cu}-\mathrm{N} 5$ and $\mathrm{N} 3-\mathrm{Cu}-$ N4 angles. The difference observed in the apex-apex distance of the six-membered rings [Cu \cdots C5 3.324(4) and $\mathrm{Cu} \cdots \mathrm{N} 13.257(3) \AA$] is ascribable to the $\mathrm{N} 1-\mathrm{C}$ bond lengths being shorter than the C5-C distances; in the present case, this feature seems less pronounced than that observed in the structure studied by De Blas et al. (1994). The non-coordinating tertiary amine N1 atom shows a clear $s p^{2}$ character, as expected for an amide N atom. There is an intramolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interaction involving the C 9 and carboxylic O 9 atoms, resulting in a five-membered ring [$\mathrm{H} 9 \mathrm{~b} \cdots \mathrm{O} 92.28$ (3), C9 . .O9 2.717 (4) A and C9—H9b \cdots O9 106 (2) ${ }^{\circ}$].

A dihedral angle of $54.5(1)^{\circ}$ is formed between the secondary amine N_{4} plane and the phenyl ring whose orientation allows a possible intramolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interaction involving the aromatic ring and the nitrate O 3 atom [$\mathrm{H} 11 \cdots \mathrm{O} 3.54$ (3), $\mathrm{C} 11 \cdots \mathrm{O} 3.467$ (4) \AA and C11-H11 $\left.\cdots \mathrm{O} 148(3)^{\circ}\right]$. In the nitro group, the bond distances are in the expected range, while the torsion angles around the $\mathrm{C}-\mathrm{N}$ bond $[\mathrm{O} 7-\mathrm{N} 8-\mathrm{C} 13-\mathrm{C} 12$ -18.7 (5) and $\mathrm{O} 8-\mathrm{N} 8-\mathrm{C} 13-\mathrm{C} 12160.1(3)^{\circ}$] indicate non-coplanarity with the aromatic ring. The H atoms on the secondary amine N 2 and N 4 atoms take part in quite weak hydrogen bonds, which connect symmetryrelated molecules contributing to the crystal-packing stabilization (see Fig. 2) [$\mathrm{H} 2 \mathrm{~N} \cdots \mathrm{O} 2^{\mathrm{i}} 2.45$ (3), $\mathrm{N} 2 \cdots \mathrm{O} 2^{\mathrm{i}}$ 3.183 (3) \AA and $\mathrm{N} 2-\mathrm{H} 2 \mathrm{~N} \cdots \mathrm{O}^{\mathrm{i}} 150(3)^{\circ} ; \mathrm{H} 4 \mathrm{~N} \cdots \mathrm{O}^{\mathrm{ii}}$ 2.47 (3), $\mathrm{N} 4 \cdots \mathrm{O}^{\mathrm{ii}} 3.202(4) \AA$ and $\mathrm{N} 4-\mathrm{H} 4 \mathrm{~N} \cdots \mathrm{O}^{\mathrm{ii}}$ 137 (3) ${ }^{\circ}$; symmetry codes: (i) $1-x, 2-y, 2-z$; (ii) $\left.\frac{1}{2}+x, \frac{3}{2}-y, z-\frac{1}{2}\right]$. Besides the van der Waals forces, the crystal structure could be further stabilized by $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ contacts. One nitrate ion interacts with aliphatic H atoms belonging to two different macrocyclic rings $\left[\mathrm{H} 7 a \cdots \mathrm{O} 6^{\text {iii }} 2.453\right.$ (3), $\mathrm{C} 7 \cdots \mathrm{O}^{\mathrm{iiii}}$
3.419 (4) \AA and $\mathrm{C} 7-\mathrm{H} 7 a \cdots 6^{\text {iii }} 160(3)^{\circ} ; \mathrm{H} 6 a \cdots \mathrm{O} 4^{\mathrm{iii}}$ 2.45 (3), C6 $\cdots 4^{\text {iii }} 3.352$ (4) \AA and $\mathrm{C} 6-\mathrm{H} 6 a \cdots \mathrm{O} 4^{\text {iii }}$ $155(3)^{\circ}$; symmetry code: (iii) $\left.x-\frac{1}{2}, \frac{3}{2}-y, z-\frac{1}{2}\right]$.

Fig. 2. A view of the crystal packing along the a axis. H atoms have been omitted.

Experimental

The title compound was prepared by reacting 1,9-diamino-3,7-diazanonone (2.3.2-tet) with copper(II) nitrate trihydrate, 4-nitrobenzamide, excess formaldehyde and triethylamine in ethanol at 323 K for 24 h . The reaction mixture was cooled and treated with 70% perchloric acid giving the required crystalline product.

Crystal data

$\left[\mathrm{Cu}\left(\mathrm{C}_{16} \mathrm{H}_{26} \mathrm{~N}_{6} \mathrm{O}_{3}\right)\right]\left(\mathrm{NO}_{3}\right)_{2}$
$M_{r}=537.98$
Monoclinic
$P 2_{1} / n$
$a=7.935(1) \AA$
$b=25.116$ (3) \AA
$c=11.081$ (2) \AA
$\beta=96.40(1)^{\circ}$
$V=2194.6(6) \AA^{3}$
$Z=4$
$D_{x}=1.6282 \mathrm{Mg} \mathrm{m}^{-3}$
D_{m} not measured

Data collection

Enraf-Nonius CAD-4 diffractometer
$\omega-2 \theta$ scans
Absorption correction: ψ scan (North, Phillips \& Mathews, 1968)
$T_{\text {min }}=0.76, \quad T_{\text {max }}=0.79$
5038 measured reflections
3912 independent reflections 3612 observed reflections
$[I>\sigma(I)]$
$\mathrm{Cu} K \alpha$ radiation
$\lambda=1.54184 \AA$
Cell parameters from 25 reflections
$\theta=28-32^{\circ}$
$\mu=1.962 \mathrm{~mm}^{-1}$
$T=293$ (3) K
Prism
$0.36 \times 0.14 \times 0.13 \mathrm{~mm}$ Violet

$$
R_{\mathrm{int}}=0.014
$$

$\theta_{\text {max }}=70^{\circ}$
$h=0 \rightarrow 9$
$k=0 \rightarrow 30$
$l=-13 \rightarrow 13$
3 standard reflections monitored every 300 reflections intensity decay: 1.0%

Refinement
Refinement on F
$R=0.050$
$w R=0.039$
$S=1.744$
3612 reflections
386 parameters
H atoms: see below $w=1 /\left[\sigma(F)^{2}\right]$
$(\Delta / \sigma)_{\max }=0.03$ $\Delta \rho_{\text {max }}=0.407 \mathrm{e}^{-3}$
$\Delta \rho_{\min }=-0.086 \mathrm{e}^{-3}$
Table 1. Fractional atomic coordinates and equivalent isotropic displacement parameters $\left(\AA^{2}\right)$

$U_{\text {eq }}=(1 / 3) \sum_{i} \Sigma_{j} U_{i j} a_{i}^{*} a_{j}^{*} \mathbf{a}_{i} \cdot \mathbf{a}_{j}$.				
	x	y	z	$U_{\text {eq }}$
Cu	0.72267 (5)	0.85729 (2)	0.96197 (4)	0.0345 (1)
O9	0.2754 (3)	0.7977 (1)	1.2427 (2)	0.0791 (9)
01	0.5638 (3)	0.9336 (1)	0.8740 (2)	0.0725 (9)
O2	0.3629 (3)	0.9908 (1)	0.8707 (3)	0.0816 (10)
O3	0.3566 (3)	0.9187 (1)	0.9751 (3)	0.0780 (10)
04	1.1242 (3)	0.72169 (9)	0.9698 (3)	0.0701 (9)
O5	1.1339 (4)	0.8033 (1)	0.9316 (3)	0.1239 (13)
06	0.9231 (3)	0.77317 (9)	1.0164 (2)	0.0586 (8)
O7	0.2718 (4)	1.05255 (9)	1.5149 (2)	0.0751 (11)
O8	0.1458 (4)	0.9978 (1)	1.6234 (2)	0.0953 (12)
N	0.5324 (3)	0.8252 (1)	1.1973 (2)	0.0388 (7)
N2	0.7399 (3)	0.88664 (9)	1.1353 (2)	0.0345 (8)
N3	0.9348 (3)	0.89809 (9)	0.9462 (2)	0.0356 (7)
N4	0.7106 (3)	0.8256 (1)	0.7951 (2)	0.0399 (8)
N5	0.5267 (3)	0.80933 (9)	0.9863 (2)	0.0347 (7)
N6	0.4258 (3)	0.9483 (1)	0.9055 (3)	0.0479 (9)
N7	1.0595 (3)	0.7657 (1)	0.9716 (3)	0.0511 (9)
N8	0.2312 (4)	1.0078 (1)	1.5423 (3)	0.0562 (10)
C16	0.3898 (4)	0.8303 (1)	1.2559 (3)	0.0464 (10)
C1	0.6898 (4)	0.8523 (1)	1.2332 (3)	0.0389 (9)
C2	0.9178 (4)	0.9054 (1)	1.1626 (3)	0.0438 (9)
C3	0.9629 (4)	0.9346 (1)	1.0509 (3)	0.0428 (10)
C4	0.9469 (4)	0.9252 (1)	0.8295 (3)	0.0482 (11)
C5	0.9263 (4)	0.8862 (2)	0.7240 (3)	0.0546 (12)
C6	0.7506 (5)	0.8624 (1)	0.6969 (3)	0.0540 (11)
C7	0.5413 (4)	0.8007 (i)	0.7709 (3)	0.0481 (11)
C8	0.5089 (4)	0.7706 (1)	0.8843 (3)	0.0447 (10)
C9	0.5357 (4)	0.7840 (1)	1.1058 (3)	0.0434 (10)
C10	0.3720 (4)	0.8781 (1)	1.3345 (3)	0.0404 (9)
C11	0.3789 (4)	0.9293 (1)	1.2885 (3)	0.0454 (10)
C12	0.3364 (4)	0.9725 (1)	1.3583 (3)	0.0455 (10)
C13	0.2867 (4)	0.9627 (1)	1.4707 (3)	0.0442 (10)
C14	0.2826 (4)	0.9122 (1)	1.5197 (3)	0.0500 (12)
Cl 5	0.3251 (4)	0.8694 (1)	1.4508 (3)	0.0489 (10)

Table 2. Geometric parameters (${ }^{\circ},{ }^{\circ}$)
$\mathrm{Cu}-\mathrm{Ol}$
$\mathrm{Cu}-\mathrm{O} 6$
$\mathrm{Cu}-\mathrm{N} 2$
Cu 3
$\mathrm{Cu}-\mathrm{N} 4$
Cu 4
$\mathrm{Cu}-\mathrm{N} 5$
$\mathrm{O}-\mathrm{Cl}$
$\mathrm{O} 1-\mathrm{N} 6$
$\mathrm{O} 2-\mathrm{N} 6$
$\mathrm{O} 3-\mathrm{N} 6$
$\mathrm{O} 4-\mathrm{N} 7$
$\mathrm{O} 5-\mathrm{N} 7$
$\mathrm{O}-\mathrm{N} 7$
$\mathrm{O} 7-\mathrm{N} 8$
$\mathrm{O} 8-\mathrm{N} 8$
$\mathrm{~N} 1-\mathrm{C} 16$
$\mathrm{~N} 1-\mathrm{Cl}$
$\mathrm{N} 1-\mathrm{C} 9$
$\mathrm{~N} 2-\mathrm{Cl}$
$2.437(3)$
$2.673(2)$
$2.048(2)$
$1.995(2)$
$2.006(2)$
$2.009(2)$
$1.219(4)$
$1.242(4)$
$1.223(4)$
$1.242(4)$
$1.220(4)$
$1.222(4)$
$1.254(4)$
$1.218(4)$
$1.210(4)$
$1.371(4)$
$1.439(4)$
$1.450(4)$
$1.475(4)$

N2-C2
N3-C3
N3-C4
N4-C6
N4-C7
N5-C8
$\mathrm{N} 5-\mathrm{C} 9$
N8-C13
C16-C10
C2-C3
C4-C5
C5-C6
C7-C8
$\mathrm{Cl0}-\mathrm{Cl1}$
C10-C15
$\mathrm{Cl1}-\mathrm{Cl} 2$
$\mathrm{Cl2-C13}$
$\mathrm{C} 13-\mathrm{C} 14$
$\mathrm{Cl} 4-\mathrm{Cl} 5$

1.487 (4)
1.477 (4)
1.474 (4)
1.488 (4)
1.479 (4)
1.487 (4)
1.463 (4)
1.477 (4)
1.499 (4)
1.515 (5)
1.520 (5)
1.516 (5)
1.514 (5)
1.389 (4)
1.397 (4)
1.395 (5)
1.369 (5)
$1.383(4)$

N4-Cu-N5	85.9 (1)	$\mathrm{O} 1-\mathrm{N} 6-\mathrm{O} 3$	117.5 (3)
N3-Cu-N5	173.3(1)	O1-N6-O2	120.8 (3)
$\mathrm{N} 3-\mathrm{Cu}-\mathrm{N} 4$	94.4 (1)	O5-N7-O6	120.1 (3)
$\mathrm{N} 2-\mathrm{Cu}-\mathrm{N} 5$	93.5 (1)	O4-N7-O6	121.7 (3)
$\mathrm{N} 2-\mathrm{Cu}-\mathrm{N} 4$	177.5 (1)	$\mathrm{O} 4-\mathrm{N} 7-\mathrm{O} 5$	118.2 (3)
$\mathrm{N} 2-\mathrm{Cu}-\mathrm{N} 3$	85.9 (1)	O7-N8-08	124.1 (3)
$\mathrm{Ol}-\mathrm{Cu}-\mathrm{N} 5$	98.7 (1)	O8-N8-C13	117.8 (3)
$\mathrm{O} 1-\mathrm{Cu}-\mathrm{N} 4$	88.5 (1)	O7-N8-C13	118.1 (3)
$\mathrm{O} 1-\mathrm{Cu}-\mathrm{N} 3$	88.0 (1)	$\mathrm{O} 9-\mathrm{Cl} 6-\mathrm{N} 1$	121.6 (3)
$\mathrm{Ol}-\mathrm{Cu}-\mathrm{N} 2$	94.0 (1)	$\mathrm{Nl}-\mathrm{Cl} 6-\mathrm{Cl} 0$	119.0 (3)
$\mathrm{O6}-\mathrm{Cu}-\mathrm{N} 5$	86.9 (1)	O9--C16-C10	119.3 (3)
$\mathrm{O} 6-\mathrm{Cu}-\mathrm{N} 4$	81.9 (1)	$\mathrm{N} 1-\mathrm{Cl}-\mathrm{N} 2$	111.7 (2)
$\mathrm{O} 6-\mathrm{Cu}-\mathrm{N} 3$	86.5 (1)	N2-C2-C3	107.0 (2)
$\mathrm{O} 6-\mathrm{Cu}-\mathrm{N} 2$	95.6 (1)	N3-C3-C2	108.3 (2)
$\mathrm{Ol}-\mathrm{Cu}-\mathrm{O} 6$	168.6 (1)	N3-C4-C5	111.4 (3)
$\mathrm{Cl}-\mathrm{Nl}-\mathrm{C} 9$	116.6 (2)	C4-C5-C6	115.1 (3)
C16-NI-C9	118.5 (3)	$\mathrm{N} 4-\mathrm{C} 6-\mathrm{C} 5$	111.5 (3)
C16-N1-Cl	124.2 (3)	N4-C7-C8	107.2 (3)
$\mathrm{Cu}-\mathrm{N} 2-\mathrm{C} 2$	105.5 (2)	N5-C8-C7	107.1 (2)
$\mathrm{Cu}-\mathrm{N} 2-\mathrm{Cl}$	119.0 (2)	N1-C9-N5	108.7 (2)
$\mathrm{C} 1-\mathrm{N} 2-\mathrm{C} 2$	111.3 (2)	$\mathrm{Cl} 6-\mathrm{Cl}-\mathrm{Cl} 5$	117.7 (3)
$\mathrm{Cu}-\mathrm{N} 3-\mathrm{C} 4$	116.9 (2)	C16-C10-C11	121.2 (3)
$\mathrm{Cu}-\mathrm{N} 3-\mathrm{C} 3$	107.8 (2)	$\mathrm{Cl1}-\mathrm{C} 10-\mathrm{C} 15$	120.5 (3)
C3-N3-C4	112.6 (2)	$\mathrm{Cl} 0-\mathrm{Cl1}-\mathrm{Cl2}$	119.6 (3)
$\mathrm{Cu}-\mathrm{N} 4-\mathrm{C} 7$	106.5 (2)	$\mathrm{Cl1}-\mathrm{Cl} 2-\mathrm{Cl} 3$	118.6 (3)
$\mathrm{Cu}-\mathrm{N} 4-\mathrm{C} 6$	115.8 (2)	N8-C13-C12	119.0 (3)
C6-N4-C7	113.2 (2)	$\mathrm{C} 12-\mathrm{Cl} 3-\mathrm{Cl} 4$	122.9 (3)
$\mathrm{Cu}-\mathrm{N} 5-\mathrm{C} 9$	114.9 (2)	N8-C13-C14	118.1 (3)
$\mathrm{Cu}-\mathrm{N} 5-\mathrm{C} 8$	107.4 (2)	C13-C14-C15	118.6 (3)
C8-N5-C9	113.3 (2)	$\mathrm{Cl} 0-\mathrm{Cl5}-\mathrm{Cl} 4$	119.7 (3)
$\mathrm{O} 2-\mathrm{N} 6-\mathrm{O} 3$	121.7 (3)		

All H atoms were positioned experimentally and inserted with an overall atomic displacement parameter equal to $5.0 \AA^{2}$, with only their $x y z$ parameters being refined.

Data collection: CAD-4 Manual (Enraf-Nonius, 1988). Cell refinement: DATCIN (Enraf-Nonius, 1988). Data reduction: MolEN (Fair, 1990). Program(s) used to solve structure: MULTAN80 (Main et al., 1980). Program(s) used to refine structure: MolEN. Molecular graphics: ORTEPII (Johnson, 1976). Software used to prepare material for publication: PARST (Nardelli, 1983).

Lists of structure factors, anisotropic displacement parameters, \mathbf{H} atom coordinates and complete geometry have been deposited with the IUCr (Reference: NA1257). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CHl 2HU, England.

References

Abba, F., De Santis, G., Fabbrizzi, L., Licchelli, M., Manotti Lanfredi, A. M., Pallavicini, P., Poggi, A. \& Ugozzoli, F. (1994). Inorg. Chem. 33, 1366-1375.
De Blas, A., De Santis, G., Fabbrizzi, L., Licchelli, M., Manotti Lanfredi, A. M., Morosini, P., Pallavicini, P. \& Ugozzoli, F. (1994). J. Chem. Soc. Dalton Trans. pp. 1411-1416.

De Blas, A., De Santis, G., Fabbrizzi, L., Licchelli, M., Manotti Lanfredi, A. M., Pallavicini, P.. Poggi, A. \& Ugozzoli, F. (1993). Inorg. Chem. 32, 106-113.
Enraf-Nonius (1988). CAD-4 Manual. Version 5.0. Enraf-Nonius, Delft, The Netherlands.
Fabbrizzi, L., Manotti Lanfredi, A. M., Pallavicini, P., Perotti, A., Taglietti, A. \& Ugozzoli, F. (1991). J. Chem. Soc. Dalton Trans. pp. 3263-3269.
Fair, C. K. (1990). MolEN. An Interactive Intelligent System for Crystal Structure Analysis. Enraf-Nonius, Delft, The Netherlands.
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.

Main, P., Fiske, S. J., Hull, S. E., Lessinger, L., Germain, G., Declercq, J.-P. \& Woolfson, M. M. (1980). MULTAN80. A System of Computer Programs for the Automatic Solution of Crystal Structures from X-ray Diffraction Data. Universities of York, England, and Louvain, Belgium.
 Nardelli, M. (1983). Comput. Chem. 7, 95-98.
 North, A. C. T.. Phillips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, 351-359.
 Zachariasen, W. H. (1963). Acta Cryst. 16, 1139-1144.

Acta Cryst. (1996). C52, 2716-2720

Ammonium, Potassium and Lithium Salts of D,L-Glyceric Acid

Tomasz Popek and Tadeusz Lis

Institute of Chemistry, University of Wroctaw, ul. Joliot-Curie 14, 50-383 Wroctaw, Poland. E-mail: tp@ichuwr.chem.uni. wroc.pl
(Received 22 February 1996; accepted 29 May 1996)

Abstract

The crystal structures of the ammonium, potassium and lithium salts of racemic glyceric acid (ammonium glycerate, $\mathrm{NH}_{4}^{+} . \mathrm{C}_{3} \mathrm{H}_{5} \mathrm{O}_{4}^{-}$, potassium glycerate, $\mathrm{K}^{+} . \mathrm{C}_{3} \mathrm{H}_{5} \mathrm{O}_{4}^{-}$, and lithium glycerate, $\mathrm{Li}^{+} . \mathrm{C}_{3} \mathrm{H}_{5} \mathrm{O}_{4}^{-}$) have been determined by X-ray analysis. The crystals of the potassium and ammonium salts are isomorphous. The α-hydroxy O atom lies almost in the plane of the carboxylate group in all three structures. There are networks of hydrogen bonds in all three crystals in which all the H atoms of the hydroxyl groups and the N -bonded H atoms in the ammonium salt are involved.

Comment

Glycerates are known to be intermediate compounds in many metabolic pathways. They are also the precursors of the 2-phospho-d-glycerates (Heinz \& Lamprecht, 1967). Only two structures (of the Ca salts of glyceric acid) have been characterized to date, di(D,L-glycerate) dihydrate (Taga, Ohashi \& Osaki, 1978) and di(Lglycerate) dihydrate (Lis \& Popek, 1993). In this paper, the crystal structures of the ammonium (I), potassium (II), and lithium (III) salts of D,L-glyceric acid are presented. This work is a part of our systematic study of the structures of glycerate residues in different chemical environments (Lis \& Jerzykiewicz, 1996).

$$
\begin{gathered}
\mathrm{CH}_{2}(\mathrm{OH})-\mathrm{CH}(\mathrm{OH})-\mathrm{COO}^{-} \cdot M^{+} \\
\text {(I) } M=\mathrm{NH}_{4}^{+} \\
\text {(II) } M=\mathrm{K}^{+} \\
\text {(III) } M=\mathrm{Li}^{+}
\end{gathered}
$$

The same numbering scheme has been used for the glycerate residues of all three compounds. The structures of the anions in (I) and (II) are essentially the same, so only the view of the glycerate anion in the potassium salt is included in this work. The D-isomers of the anions of the potassium and lithium salts are shown in Figs. 1 and 2.

Fig. 1. The molecular structure and numbering scheme of the glycerate anion in the potassium D.L-glycerate crystal. Displacement ellipsoids are shown at the 50% probability level. The anion is shown as the D-isomer. The anion in the ammonium salt is essentially identical in structure and so is not shown as a separate figure.

Fig. 2. The molecular structure and numbering scheme of the glycerate anion in the lithium D, L-glycerate crystal. Displacement ellipsoids are shown at the 50% probability level. The anion is shown as the D-isomer.

The crystals of (I) are composed of ammonium cations and the D- and l-glycerate anions. The structure of the crystal is stabilized by an extensive network of hydrogen bonds (Fig. 3). The NH_{4}^{+}cation is bridged through $\mathrm{O} 4, \mathrm{O} 2$ and three O 1 atoms to the four symmetry-related glycerate anions (Table 3). The Ol atom appears to be involved, as an acceptor, in the hydrogen-bond interaction with three different ammonium cations. The N -bonded atom H 4 is involved in the bifurcated interaction with the Ol and O 2 atoms of the same glycerate ion.

The crystal of (II) is isomorphous with the crystal of (I). Fig. 4 shows the crystal packing of (II). One glycerate ion chelates the K^{+}ion through $\mathrm{O} 1, \mathrm{O} 2$ and

Acta Cristallographica Section C ISSN 0108-2701 © 1996

